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« Context: The explosion in large language model availability has
created numerous options for users.
« Challenge: Selecting the optimal model for a task involves:
* 1) Knowing which models perform better on your task type.
« 2) Balancing the trade-off between performance and
operational costs (compute, latency, API fees, etc).
« Current Limitation: Standard performance benchmarks miss:
« 1) Skills a model needs to perform well on a given task.
« 2) Why a model fails at a task.
« 3) Whether a cheaper model could suffice, or what to do
when the highest performing model is out of your budget.
« Core Problem: How to select the most suitable LLM under real-
world resource constraints?

Choosing the optimal Large Language Model (LLM) presents a
significant challenge due to the trade-offs between performance,
cost, and energy across various models. Standard benchmarks
often fail to capture the specific capabilities needed for a task or
whether a less expensive model could be adequate. To address
this, we introduce BELLA (Budget-Efficient LLM Selection via
Automated Skill Profiling). BELLA analyzes LLM outputs to identify
interpretable skills and weaknesses, creating structured profiles
to recommend models that offer the best utility within user-
defined resource constraints. Demonstrated initially on financial
reasoning tasks, BELLA's framework is designed to be applicable
across diverse domains facing cost-performance decisions.

« Methodology: Leave-one-task-out cross-validation on financial
reasoning benchmarks.

« Comparison of selection algorithm when using features
extracted from BELLA's skill profiling vs alternative methods.

« Metrics:

« (Cost-performance trade-off (Pareto frontier) achieved by the
models selected using each feature set.

« Agreement rate between models selected using each
feature set and the optimal (Oracle) choice for each task
under budget constraints.

- Hypotheses:

1) Skill features derived from BELLA will enable the selection

algorithm to achieve a superior cost-performance frontier
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